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SUMMARY

Using anisotropic elasticity theory, delamination stresses in a semicircular laminated composite curved bar

subjected to end forces and end moments were calculated, and their radial locations were determined. A

family of design curves was presented, showing variation of the intensity of delamination stresses and their

radial locations with different geometry and different degrees of anisotropy of the curved bar. The effect

of anisotropy on the location of peak delamination stress was found to be small.

INTRODUCTION

The major cause of degradation in stiffness and strength of laminated composite materials is the growth

of delamination between individual composite layers. Excess delamination may result in ultimate fatigue

failure. The most common failure mode of laminated composite material is delamination failure. Delam-

ination may result from the following: eccentricities in the structural load paths, inducing out-of-plane

loads; discontinuities in the structure, creating local out-of-plane loads; low-velocity impacts; cyclic load-

ing; incomplete curing; and the introduction of foreign particles during the manufacturing process. The

delamination growth may redistribute stresses in the composite plies and therefore may reduce the residual

stiffness and strength of the laminated composites. In the common application of the composite materials,

many structural parts have certain degrees of curvature. Because of this curvature, radial stress can be

generated. If the radial stress is in tension, this stress will function as open-mode delamination stress and
will cause the delamination to initiate and grow under service loading (mostly cyclic loading).

Delamination problems in composite materials have been studied extensively recently, and major re-

search activities are listed in O'Brien (1984a). There are a variety of ways to conduct composite delam-

ination studies using different types of test specimens. However, one of the most attractive test coupon

geometries is in the shape of a semicircular curved bar. It is well known that if the curved bar is subjected

to bending, radial stress and shear stress can be induced inside the curved bar. If the loading is intense

enough, open-mode delamination can take place at the site of peak tensile radial stress. If the composite

curved bar has weak shear strength, shear-mode delamination can occur at the site of peak shear stress.

Since the peak value of tensile radial stress (or peak shear stress) occurs only at a particular point, the

curved bar offers an excellent situation for studying the initiation and subsequent growth of delamination

under cyclic loading and the fatigue behavior (degradation of stiffness and strength) of laminated composite
materials.

The purpose of this report is to document the calculation of delamination stress (open-mode or shear

mode) and its exact radial location and to relate how delamination stress and its location change with the

degree of anisotropy (different stacking sequences) and the wall thickness of the curved bar.

NOMENCLATURE

a

b

EL

E_

ET

Eo

P_

GLT

Got
h

inner radius of curved bar, in

outer radius of curved bar, in

modulus of elasticity of single ply in fiber direction, lb/in 2

modulus of elasticity of laminated composite in r direction, lb/in 2

modulus of elasticity of single ply in direction transverse to fiber direction, lb/in 2

modulus of elasticity of laminated composite in 9 direction, lb/in 2

loading axis offset, in

shear modulus of single ply, lb/in 2

shear modulus of laminated composite, lb/in 2

width of curved bar, in



k

M

P

?,

7"m

t

0

/tLT, b'TL

vat

oaD

oat

oa,
(oat)m 

C78

rt0

anisotropic parameter,

applied end moment, in-lb

applied end force, lb

radial coordinate, in

radial location of (at)m_, in
tradial location of (fir)max, in

thickness of curved bar, t = (b - a), in

anisotropic parameter, fl = _/1 + (Eo/Et)(1 + 2v0t) + Eo/Got
tangential coordinate, rad

Poisson ratios of single-layer composite

Poisson ratio of laminated composite

maximum radial stress (open-mode delamination stress) induced by both
tP and M, OaD = (oar)max q- (oar)max, lb/in 2

radial stress induced by end forces P, lb/in 2

radial stress induced by end moments M, lb/in 2

maximum radial stress induced by end forces P, lb/in 2

maximum radial stress induced by end moments M, lb/in 2

tangential stress induced by end forces P, lb/in 2

tangential stress induced by end moments M, lb/in 2

shear stress induced by end forces P, lb/in 2

shear stress induced by end moments M, lb/in 2

COMPOSITE CURVED BAR

Figure 1 shows a semicircular composite curved bar subjected to end forces P. Because finite area is

needed for load attachment in the fatigue tests, both ends of the curved bar have to be extended slightly.

Thus, the loading axis will have slight offset e from the vertical diameter of the curved bar. Therefore, the

loading state in figure 1 (or fig. 2, A) is the combination of two cases:

1. Bending due to end forces P with the loading axis coinciding with the vertical diameter of the curved
bar (fig. 2, B)

2. Pure bending due to end moments M (= Pe) created by the loading axis offset e (fig. 2, C)

It has been observed that the highest probability of delamination onset takes place at the interfaces of 0 °

and 90 ° plies because of high Poisson's ratio mismatch (O'Brien, 1982; O'Brien, 1984b). In constructing
the curved-bar test coupon, it is desirable to introduce 90 ° plies at, or in the vicinity of, a peak stress

point (that is, a peak radial tensile stress point or peak shear stress point) and thereby ensure that the

delamination will initiate at the peak stress point, which is yet to be determined. In the following sections,

the peak radial tensile stress (or peak shear stress) and its radial location will be calculated.

ANISOTROPIC CURVED BAR UNDER END FORCES

Figure 3 shows the anisotropic semicircular curved bar subjected to end forces P with the loading axis

coinciding with the vertical diameter of the curved bar. The situation in figure 3 is similar to that in
figure 2, B.
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Stresses Induced

If the composite material of the curved bar is treated as a continuous anisotropic material, then the

stresses induced in the composite curved bar due to the end forces P may be written as (Lekhnitshii and

others, 1968, p. 99, taking w = 0 °)

ao(rlS)-bhglr (l+fi)(b)+(1-fi)(!) (b)-1-(b) sin0 (2)

.vre(r10) - bhgl r + - 1 - cos _?
(3)

where

a

b

and

is inner radius of the curved bar,

outer radius of the curved bar,

h width of the curved bar,

r radial coordinate,

8 tangential coordinate,

a, radial stress,

ae tangential stress,

r,0 shear stress,

gl= _ 1- + 1+ ln_

and the anisotropic parameter _ is defined as

1+ (l - 2uo ) + ao----

where

Ee
E_

Gsr

//0r

is modulus of elasticity in 9 direction,

modulus of elasticity in r direction,

shear modulus, and
Poisson's ratio.

For isotropic materials, t3 = 2.

Notice from equations (i) and (3) that the magnitudes of ar and rre are identical, but they are out of

phase by _r/2. The maximum value of _r, occurs at cross section _ = _r/2 (midspan of the curved bar), and

rre reaches its peak value at the two load application cross sections 6 = 0 and 8 = 7r:

at(r, 2) =-rro(r,O)=rro(r,_r) (6)



Thus, the semicircular curved-bar test coupon can provide the same intensities of open-mode and shear-

mode delamination stresses simultaneously. If the composite is weak in open-mode strength, the delami-

nation will initiate at the midspan 8 = _r/2. On the other hand, if the composite is weak in shear strength,

delamination will start at both ends of the curved bar (that is, 9 = 0 and _ = _r).

Because of the relationship between aT and rye given in equation (6), analysis will be limited to at.

Equation (1) (for 9 - r/2) may be rewritten as

where

B--- _ -1 - +1 ln-a (8)

Or, in dimensionless form,

h(b/a) a_ (r, 2 ) - (b/B- 1) ra [(r)_+ (ab-) _ (a) z- (b) z- 1] (9)

For the isotropic case (that is,/3 = 2), equation (7) may be written in the following form (for h = 1):

,,,. r, =-- + + b (lo)
_=_ N r 3 r

where
b

N= -a2(B)_=2 = a2 - b2 + (a2_-b2)ln- (11)
a

Notice that equation (10) is identical with the expression given by Timoshenko and Goodier (1970) for

isotropic materials).

Location of Maximum a_

The radial location r = rm where at(r, 7r/2) reaches its peak value (at)max may be found by differentiating

equation (7) with respect to r and setting the resulting derivative to zero, or

d[a_(r'2)ldr =0 (12)

from which rm is found as

For the isotropic case

÷4(/_2-1)(b)/_- [(b)/_+l]) (13)

(14)



(O'r)max may be written as

h(b- a) h(b- a)
p ("_)m_x- p aT (rm, 2) -- (b/_-l) arm [(_)Z

where rm is given by equation (13).

Thin Curved Bar

When the thickness t (-- b - a) of the curved bar is small,

- = 1+ - <<1 (16)
a a

The expression for B given in equation (8) may be expanded in terms of small quantity t/a as

(B)b-_o = -_

Notice that the lower order terms up to O(t/a) 2 cancelled out.

The expression for rm given in equation (13) may be expanded to the following form:

1,b--_a 2a 4 + (18)

Notice that rm is independent of f_ and that (a,)m_x is always located on the inner side of the middle
surface of the curved bar.

Lastly, equation (15), with equation (18) applied, may be expanded as

b--.o= -B _- +... (19)

where the lower order terms up to O(t/a) 2 cancelled out.

Combining equations (17) and (19) there results

[h(bp a).(ar)m_X]b_._ _

3

= _ (20)

which is independent of anisotropy (that is, the value of _).

ANISOTROPIC CURVED BAR UNDER END MOMENTS

Figure 4 shows the anisotropic semicircular curved bar under pure bending due to end moments M. Thi_

case corresponds to that in figure 2, C.



Stresses Induced

If the compositematerialof the curvedbar is treatedascontinuousanisotropicmaterial,the radialstress
tangentialstressat, and shear stress rio induced in the curved bar under the end moments M may beO"r ,

expressed as (Lekhnitskii and others, 1968, p. 97)

a_(r) - b__hg [1_ 1-(a/b)k+lM1---_ (b)k-l- l-(a/b)k-li:-_ (b) k+l (!)k+l]

M [ 1--(a/b)k+l k k-1 l_(a/b)k_l k+l]a_o(r)=--_g 1 1-(a/b) 2k (b) + i 2-_k(b) k-1 (!)

r'o = 0

(21)

(22)

(23)

where the anisotropic parameter k is defined by

and

1- (a/b) 2 k [1-(a/b)k+l] 2 k(a/b)2 [1-(a/b)k-1] 2
g= +_

2 k + 1 [1 - (a/b) 2k] k - 1 [1 - (a/b) 2k]

Rewriting a_r(r) (eq. (21)) in terms of b/a instead of a/b yields

where

1] 1]
In dimensionless form, equation (26) may be written as

(24)

(25)

(26)

(27)

ham(b - 1

_I a)a'_(r)- (b/a)--_C- {[(b)2k-l]- [(b)

-- [(b) k-1 -- 1] (b)

where am is the radius of the middle surface of the curved bar given by

1

am = _(a + b)

k+l_1](a)k-1
(28)

(29)
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For the isotropic case (k = 1), the equation may be expanded for k---+l in the following form for h = 1

(see app.):

4M (a2b 2 b b2 r a2 a_[4(r)]k--.,
\'--_'- in --t-a In _ + In rJ (30)_--- -- q

where

Q=(b2-a2)2-4a2b2(ln b) (31)

Equation (30) is exactly the same form as the stress equation given by Timoshenko and Goodier (1970)

for isotropic materials.

!

Location of Maximum a,

Differentiating equation (26) with respect to r, and setting the resulting derivative to zero,

d[a'_(r)] = 0

may be calculated as' of the maximum a,the radial location r m

(k 4- 1)(b/a) k+' [(b/a) k-l- 1]

(k- 1)[(b/a)k+_- 1]

For the isotropic case k---*l, equation (33) is reduced to

,__..,,= aV(b_)_ z 1

ln(b/a)k-1 - In b
k-1 a

where the relationship

[(b/a)k-'--l]

was used.

' may be written asThe peak radial stress (cr_)m_x when r = r m

(32)

(33)

(34)

(35)

ham(b- - 1 2k k=l

a)(otr)max= (b/a)__C {[(b) _ 1]-[(b) k+l- 1] (_-)

_ } (36)

is given in equation (33).where r m



Thin Curved Bar

When the thickness of the bar is small (that is, b--*a), the expression C given in equation (27) may be

expanded in terms of t/a (see eq. (16)) as

6-- (t) 4
(c)b--,o = - k(k2 - 1) +--- (37)

in which all the lower order terms up to O(t/a) 3 cancelled out.

given in equation (33) could be expanded in a similar way to yieldThe expression for r m

= 1 + +--. (38)
\ a ]b---+a 2a 24

!Equation (38) shows that the location of (fir)max is always on the inward side of the middle surface of the
curved bar, and that the location of '(at)max drifts away from the middle surface more slowly than the case
of (fir)max (see eq. (18)) as the value b/a increases.

The stress equation (36) may be expanded in terms of t/a as

(1/2)k(k 2- 1)(t/a) 4 + ...

b-'_a -2C

(39)

Notice that all the terms up to O(t/a) 3 disappeared. With the application of equation (37), equation (39)
becomes

3 (40)[ ham(--bM-'-a) (a'r )max] b_.,a = -_

which is independent of material anisotropy (that is, the value of k). Notice that the numerical values of
both equations (20) and (40) are identical.

DELAMINATION STRESS

The open-mode maximum delamination stress o"D induced in the curved bar under the end forces P with

the loading axis offset e (see fig. 1) will be the sum of(fir)max due to P without loading axis offset (eq. (15))
and (a_)max due to M = Pe (eq. (36), see fig. 2):

or

!
fiD = (fir)max "JI- (fir)max (41)

aD -- h(bPa) (FI T F2a_) (42)



where

1 a[ ] (43)

(44)

For thin-walled curved bar, the values of F1 and F2 are quite close, or

FI,,_ F2 (45)

Therefore, the stress contribution from the end moments Pe for the thin-walled curved bar is almost

proportional to the value of e/am.

NUMERICAL RESULTS

Figure 5 shows the dimensionless delamination stress [h(b - a)/Pl(ar)max induced by the end forces P

plotted as a function of b/a for different values of anisotropic parameter/3. As b---.a, the effect of anisotropy

disappeared, and all the curves converge into a single point giving {[h(b - a)/P](a_)m_x}b--+a = 1.5,

which has been established in equation (20). For low anisotropy 2 < /3 < 5, the delamination stress

increases monotonically with the increase of b/a. However, for high anisotropy of _ > 5, the delamination

stress curves show a slight valley (or dent) in the regions of moderate values of b/a. In these regions,

[h(b - c)/P](a,)max yields values less than 1.5. Notice that as the value of/3 increases, the intensity of
delamination stress decreases, and that the higher the value of b/a (that is, the thicker the wall), the higher

the magnitude of the delamination stress.

Figure 6 shows the dimensionless radial distance [(rm/a) - 1]/[(b/a) - 1] of (a,)m_x point measured from

the inner boundary of the curved bar plotted as a function of b/a. It is seen that the effect of anisotropy

is relatively small and is negligible in the region b/a < 1.4. As the value of b/a increases, the location

of (ar)m_x moves away from the middle surface and toward the inner boundary of the curved bar (see

eq. (18)).

Figure 7 shows the plots of the dimensionless delamination stress [ham(b - a)/M](a_r)max induced by

the end moments M as a function of b/a. Similar to the previous case, as b/a-*l, all the stress curves

converge into one point giving [ham(b-a)/M](a_r)max = 1.5 which was established by equation (40). Notice

that as the value of k increases, the magnitude of the delamination stress decreases. Figure 8 shows the
I

dimensionless radial distance [(#m/a) - 1]/[(b/a) - 1] of (at)max point measured from the inner boundary

of the curved bar plotted as a function of b/a. The effect of anisotropy turned out to be very small and

could be neglected in the region 1 < b/a < 1.7. As b/a increases (that is, as the wall of the curved bar
!becomes thicker), the location of (O'r)max moved inwardly away from the middle surface with a slower rate

as compared with figure 6 (compare eqs. (18) and (38)).



EXAMPLE

Let the curved bar be made of 25 composite plies with the stacking sequence of [01o/90/0/90/0/90/01o],

and with the following ply properties:

EL = 25 X 10 6 lb/in 2 (46)

ET = 1.2 x 10 6 lb/in 2 (47)

GLT = 0.75 X 106 lb/in 2 (48)

tILT : 0.33 (49)

ET

U'rL = ULT_L = 0.01584 (50)

where

EL

ET

GLT

FLT _VTL

is modulus of elasticity of single ply in fiber direction,

modulus of elasticity of single ply in the direction transverse to fiber direction,

shear modulus of single ply, and

Poisson's ratios of single ply.

Using the mixture rule, the elastic properties of the curved bar composite system may be calculated as

Ee = _-_EL + ET = 22.144 X 106 lb/in 2

Er = ET -- 1.2 X 106 lb/in 2

Got -- GLT -- 0.75 X 108 lb/in 2

22 3
vo, = _-_VLT + "_VTL = 0.2923

(51)

(52)
(53)

(54)

where

E0

Er

G0r

vet

is modulus of elasticity of laminated composite in O direction,

modulus of elasticity of laminated composite in r direction,

shear modulus of laminated composite, and

Poisson's ratio of laminated composite.

The two anisotropic parameters _ and k of the composite system may be calculated as (see eqs. (5)

and (24))

i - 2u0r) + = 6.1799 (55)
Ee(l E__L

_3= 1+--_ ao_

k = E1/-_e = 4.2957 (56)
y .e,_.

It is seen that the composite system under consideration is highly anisotropic.

10



Let themeanradiusam of the curved bar be chosen to be 1 in (ideal specimen size for common fatigue

test machine, see fig. 1), then the inner and outer radii of the curved bar will be approximately (considering

ply thickness _ 0.0118 in)

which give

a = 0.085 in (57)

b = 1.15 in (58)

b/a - 1.3529 in (59)

If the loading axis of P has an offset of

e = 0.375 in (60)

' ' may be calculated respectively from equations (15), (36), (13), and (33) using(O'r)max, (fir)max, rm, and rm
the numerical values given above. The results are given in table 1, which includes the isotropic case for

comparison.

TABLE 1--PEAK RADIAL STRESSES AND THEIR LOCATIONS

Items Anisotropic Isotropic Difference,

(fl = 6.1799, k = 4.2957) (/5 = k = 1) percent

[h(b-a)/P](fir)max 1.4939 1.5121 1.20

[ham(b - a)/Pe](a')max 1.5093 1.5198 0.69

rm (in) 0.9767 0.9774 0.07

' (in) 0.9814 0.9812 0.02rm

Notice that the difference in the locations of (ar)m_x and (O'rt)max is

!
r m -- r m = 0.9814 - 0.9767 ----0.0047 in (61)

which is about 40 percent of the ply thickness of 0.0118 in.

The maximum open-mode delamination stress fib induced by P and M = Pe may be written as

/oo = (fir)max+ (fir)max (62)

or

aD -- h(b- a) 1.4939 ÷ 1.5093 e (63)

P

- h(b - a) [1"4939 + 0.5660] (64)

P

h( b - a) [2"05991' (65)

11



The contributionfrom the end moments M = Pe is about 38 percent, and is roughly proportional to the

value of e/am.

CONCLUDING REMARKS

Delamination stresses in a semicircular laminated composite curved bar subjected to end forces and end

moments were calculated, and their radial locations were determined. A family of design curves was

presented, showing the variation of the intensity of delamination stresses and their radial locations with

different geometries and different degrees of anisotropy of the curved bar. The information provided can

be used to select proper geometry of the curved bar fatigue test coupon and to optimize the composite

stacking sequence so that delamination can initiate at the site of peak delamination stress.

12



APPENDIX--EXPANSION OF STRESS EQUATIONS (26)

AND (27) FOR ISOTROPIC CASE (k-- 1)

Equations (26) and (27) may be rewritten as (for h = 1)

(66)

(67)

when k---*l, equations (66) and (67) may be expanded in the neighborhood of k = 1 as follows.

Expansion of C

For the small value of (k - 1), equation (67) may be rewritten as

(68)

where the relationship

(69)

was used in the last term of equation (68).

Rearranging equation (69),

1]
(70)

or

or

where

(C)k---,1 = -(k - 1) { 1 [(b)2 - 1] 2 - (b)9 [ln b]2}

(k - 1)Q(C)k--., - _a_

Q = (b2 - a2)2 - 4a2b2 (ln b) 2

([71

(172¸)

(73)

13



!Expansion of a r

With equation (72) considered, the stress equation (66) may be rewritten as

4M a 2 2k k-t-1_1_--1 (r) _ (!) in(b) (75)

_

-- (/_=_-)Q -(k-l) - 1 in-a-(k- 1) ln-a

The last term of equation (77) may further be expanded as

-[(b)2k-1] [ (b/a)k+l-l_--f -1] -- (b)k+l [(b) k-l- 1] -= (b)k+lln(b)k-1 (78)

Thus equation (77) may be simplified to

or

][Orrr(r)]k---}l ---- Q - 1 in a + - in a (80)

4M [a2b2 b r a][(Ytr(r)]k'-+l-- Q L r---y-lna+b21n-b+a21n (81)

which is the form of the stress equation given by Timoshenko and Goodier (1970) for isotropic curved bar
under end moments M.

14
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Figure 1. Laminated composite curved-bar test coupon for fatigue delamination study.
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Figure 3. Bending of semicircular curved bar

by forces at its ends (case of figure 2, B).
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were determined. A family of design curves was presented, showing variation of the intensity

of delamination stresses and their radial locations with different geometry and different degrees
of anisotropy of the curved bar. The effect of anisotropy on the location of peak delamination
stress was found to be small.
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